1. 공격자보다 한발 앞서라: 사이버 위협 헌팅의 새로운 패러다임

- Threat Hunting

> Red, Blue, Puple Team 구성이 필수적

> 각 보안 솔루션을 개별적이 아닌 상호 연관적으로 운용해야 함

2. AI 혁신의 기회와 위험 관리의 균형 사이, 사이버 보안의 미래는?

- AI를 사용해 공격자들이 더 설득력 있는 피싱 메시지를 작성할 수 있음

> 잘못된 절차, 어색한 문법 등이 줄어들어 직원들이 피싱 메일로 판단/식별하기 어려워짐

> XDR을 활용해 의심스러운 송신자, 헤더와 콘텐츠 등을 분석 및 탐지할 수 있도록하고, 직원 교육 강화

 

- AI를 사용해 오디오/비디오로 직원을 속일 수 있는 딥페이크를 만들 수 있음

> 오디오/비디오를 활용해 사기, 계정탈취, 데이터 유출 등이 이루어질 수 있음

> 임원들의 비정상 지시에 대해 직원이 검증할 수 있는 권한을 부여하거나, 딥페이크를 탐지하는 기술 등이 필요

 

- AI를 사용데이터 유출 위험이 발생할 수 있음

 

- AI 혁신과 AI 이니셔티브 보안의 적절한 균형이 필요

> AI를 활용한 오용 및 사기에 대해 미리 대비, 솔루션 활용, 위험 평가, 지속적 모니터링 등

AI 혁신 AI 이니셔티브 보안
- 지능형 데이터 분석 및 인사이트
- 자동화된 사기 탐지 및 예방
- 스마트 공공 서비스 등
- 민감 데이터 보호
- 공공 신뢰 유지 및 규제 준수
- 사이버 공격 및 제로데이 취약점으로 부터 인프라 보호 등

3. 해커들의 새로운 타겟–귀사의 API는 안전하십니까?

- API 보안이 중요한 이유

> 웹 트래픽의 83%는 Digital Transformation을 주도하는데 중요한 API에 기인

> 기업의 72%는 API 인증/인가와 관련된 문제로 인해 새로운 앱 및 서비스 개선사항의 출시가 지연되는 것을 경험

> 기업의 44%는 내/외부 API에서 개인정보 보호 및 데이터 유출과 관련된 보안문제를 경험

> API와 웹 애플리케이션을 대상으로 한 악성 요청의 비율2022년 54%에서 2023년 70%로 16% 증가

4. 새로운 패러다임에 대응하는 시스템 보안

- 시스템 접근제어의 시작 : 시스템 접속 권한을 가진 내/외부 사용자에 의한 보안사고가 빈번하게 발생

> 등장 전 : 시스템별로 다양한 사용자가 접근해 접속 이력과 로그 분산, 실수로 인한 시스템 장애, 주요 데이터 유출 등의 가능성이 높았음

> 초기 Gateway 모델 : 모든 시스템에 접속하기 위한 단일 게이트웨이를 구축해 접근 경로를 단일화하고, 로그 통합 관리, 실수로 인한 장애 가능성 최소화, 데이터 보호 등 관리 효율성을 마련

 

- 패러다임 변화와 개인정보 및 기밀정보 유출 방지를 위해 시스템 접근제어에서 바뀌어야 할 핵심 요소

보안 아키텍처 변화 이슈
암묵적 신뢰 -> 비신뢰
(Zero Trust 보안 환경)
클라우드 전환 시 주요 이슈
On-Premise -> Cloud
(TCO 비용 절감과 호환성)
위협 대응 주요 이슈
Rule -> 행위 기반
(예측 기반 사전 대응 체계)
- ID 기반 접근 제어
- MFA
- 리소스별 보안 환경
- 최소 권한 및 세분화
- 지속적인 감시 및 검증
- 도입, 전환, 운영 비용절감
- 클라우드 전환 용이성
- 클라우드 보안 책임 이슈
- 실시간 분석 대응시간 단축
- 위협 예측 사전 대응

5. 사이버 위협 대응 관점에서 바라보는 개인정보 유출 사고 방지 방안

- 경계 중심 보안에서 복원을 위해 중요자산을 보호하는 대응중심으로 IT 환경 변화

- 이기종 보안 솔루션 운영

 

- XDR(eXtended Detection & Rseponse)

> 위협 이벤트를 자동으로 수집하고 상호 연결하는 탐지 & 대응 플랫폼

> 분리되어 있던 위험 인자를 단일 플랫폼으로 통합 및 연결

> 복수의 알림을 하나의 침해로 도출

> 자동화된 대응을 바탕으로 보안의 효율성과 생산성 개선

> EDR, 네트워크 탐지, 위협 인텔리전스로 구성

6. 트랜잭션 및 실시간 수집 데이터의 비식별처리 기술

- 트랜잭션 데이터 : 일종의 반정형 데이터로 하나의 데이터 셀 내에 여러 아이템들이 집합으로 구성되어 있는 비정형 데이터

- 실시간 수집 데이터 : 송신 모듈을 통해 즉시 전달되어 지속적으로 생성/수집되는 데이터

구분 설명
삭제기술 삭제
(Suppression)
- 원본 데이터에서 식별자 컬럼을 단순 삭제하는 기법으로, 원본데이터에서 식별자 또는 민감정보를 삭제
- 남아있는 정보 그 자체로도 분석의 유효성을 가져야 함과 동시에 개인을 식별할 수 없어야 하며, 인터넷 등에 공개되어 있는 정보 등과 결합하였을 경우에도 개인을 식별할 수 없어야 함
마스킹
(Masking)
- 특정 항목의 일부 또는 전부를 공백 또는 문자(*) 등이나 전각 기호로 대체 처리 하는 기법
암호화 양방향 암호화
(Two-way encryption)
- 특정 정보에 대해 암호화와 암호화된 정보에 대한 복호화가 가능한 암호화 기법
- 암호화 및 복호화에 동일 비밀키로 암호화하는 대칭키 방식을 이용
- 알고리즘 : AES, ARIA, SEED 등
일방향 암호화-암호학적 해시함수
(One-way encryptionCryptographic hash function)
- 원문에 대한 암호화의 적용만 가능하고, 암호문에 대한 복호화 적용이 불가능한 암호화 기법 (해시값으로부터 원래의 입력값을 찾기가 어려운 성질을 갖는 암호 화)
- 암호화 해시처리된 값에 대한 복호화가 불가능하고, 동일한 해시 값과 매핑되는 2개의 고유한 서로 다른 입력값을 찾는 것이 계산상 불가능하여 충돌가능성이 매우 적음
- 알고리즘 : SHA, HMAC 등
무작위화 기술 
및 차분 프라이버시
순열(치환) 
(Permutation)
- 분석시 가치가 적고 식별성이 높은 열 항목에 대해 대상 열 항목의 모든 값을 열 항목 내에서 무작위로 개인정보를 다른 행 항목의 정보와 무작위로 순서를 변경 하여 전체정보에 대한 변경없이 특정 정보가 해당 개인과 순서를 변경하여 식별 성을 낮추는 기법
차분 프라이버시
(Differential privacy)
- 프라이버시를 정량적으로 모델화하여 프라이버시 보호 정도를 측정할 수 있는 기술 또는 방법론으로 데이터의 분포 특성을 유지하여 데이터의 유용성은 유지 하면서도 개인정보를 보호하기 위해 잡음을 추가하는 기법
- 프라이버시를 일부 희생하면서 원본 데이터와 마찬가지로 높은 정확성을 갖는 특성을 갖도록 데이터를 익명화시키는 것이 중요

7. 공격표면관리(ASM)와 위협인텔리전스(TI)

- 공격표면관리 (ASM, Attack Surface Management)

> 전 세계 모든 IP에 접속하여 기업의 자산을 탐지하는 사전 예방 목적

> 수집된 자산들이 어떤 취약점, 보안문제를 가지고 있는지 분류, 탐지

> Gartner : AMS은 조직이 인식하지 못할 수 있는 인터넷 연결 자산 및 시스템에서 오는 위험을 식별하는데 도움을 주는 새로운 솔루션이다. 최근 기업에 대한 성공적인 공격의 1/3 이상이 외부와 연결된 자산으로부터 시작되며 ASM은 CIO. CISO에게 필수의 과제가 될 것이다.

> FORRESTER : 조직은 ASM을 통해 평균적으로 30% 이상의 아려지지 않은 외부 자산을 발견한다. 일부는 알려진 자산의 몇 배나 더 많은 자산을 발견하기도 한다.

 

- 위협 인텔리전스 (TI, Threat Intelligence)

> 공격에 사용된 IP/URL 등에 대한 관련 정보(과거 공격 이력 또는 연관성 등)를 제공하는 대응 목적

8. 생성형 AI 보안 위협과 안전한 생성형AI 운용 방안

- Deepfake, 아동 성 학대 사진 생성/유포 등 생성형 AI를 사용한 새로운 위협이 등장

- OWASP Top 10 for LLM Appliocations 2025

> LLM01 2025:Prompt Injection : 사용자입력(프롬프트)을 악의적으로 조작하여 LLM의 행동이나 출력 결과를 의도와 다르게 변경하는 취약점

> LLM02 2025:Sensitive Information Disclosure : LLM이 민감한 개인 정보, 기밀 데이터 또는 독점 알고리즘 정보를 의도치 않게 노출하는 취약점

> LLM03 2025:Supply Chain : LLM 개발 및 운영에 사용되는 서드파티 구성 요소, 데이터셋 및 사전 학습 모델에서 발생하는 공급망 취약점

> LLM04 2025:Data and Model Poisoning : 학습 데이터나 모델 파라미터를 악의적으로 변조하여 취약점을 주입하는 공격

> LLM05 2025:Improper Output Handling : LLM의 출력이 충분히 검증, 정제, Sandboxing 되지 않을 경우 발생하는 문제

> LLM06 2025:Excessive Agency : LLM이 지나치게 자율적인 행동을 수행하도록 허용. 인간의 직접적인 통제 없이 예기치 않은 결과나 악의적 행동 발생

> LLM07 2025:System Prompt Leakage : LLM이 내부 지시사항이나 운영 설정 정보를 의도치 않게 외부에 공개하는 취약점

> LLM08 2025:Vector and Embedding Weaknesses : Retrieval-Augmented Generation(RAG) 시스템에서 사용되는 벡터 표현 및 임베딩 기법의 결함으로 인한 문제. 부정확한 검색 결과, 조작된 문맥, 또는 민감 데이터 노출 발생

> LLM09 2025:Misinformation : LLM이사실과다른,또는왜곡된정보를생성하여잘못된결정을유도하는취약점 환각(hallucination)및학습데이터의편향등이주요원인으로작용하며,법적,평판,안전문제를야기

> LLM10 2025:Unbounded Consumption : LLM이과도하고통제되지않은요청을처리함으로써시스템자원(메모리,CPU,비용등)이고갈되는취약점

 

- 가장 중요하게 뵈야할 문제 : LLM01 2025:Prompt Injection

> AI에 악의적인 프롬프트를 주입하여 공격자가 의도하는 동작으로 유도

> Direct Injection (생성형 AI에 공격자가 직접 프롬프트 주입) or Indirect Injection (공격자가 데이터에 프롬프트 주입하여 접근하는 AI감염)

> 멀웨어 생성 및 개선, 유해 컨텐츠 생성, 데이터 유출, 모욕, 시스템 프롬프트 유출 등이 발생할 수 있음

공격 유형 설명 예시
Content Manipulation Attacks
(콘텐츠 조작 공격)
프롬프트의 텍스트를 조작하여 모델의 응답을 조종하거나 톤을 변경 단어 대체/삽입/삭제, 문법 및 철자 수정, 공격적인 문구 추가
Context Manipulation Attacks
(맥락 조작 공격)
대화 또는 상황적 맥락을 조작하여 모델의 응답을 유도 대화 가로채기, 사용자 사칭, 모델의 가정된 맥락 변경
Code/Command Injection
(코드/명령어 삽입 공격)
실행 가능한 코드 또는 명령어를 프롬프트에 삽입하여 모델 및 상호 작용하는 시스템을 손상 코드 스니펫 삽입, API 호출, 시스템/쉘 명령 실행
Data Exfiltration
(데이터 유출 공격)
민감한 데이터(개인 정보, API 키, 패스워드 등)를 유출시키는 프롬프트 제작 모델이 훈련된 데이터를 유추하여 반환하도록 유도
Obfuscation
(난독화 공격)
필터링 및 보안 장치를 우회하기 위해 복잡한 난독화 기법 활용 동형문자(Homoglyphs), 유니코드 트릭, 보이지 않는 문자 삽입
Logic Corruption
(논리 훼손 공격)
논리적 모순이나 오류를 삽입하여 모델이 잘못된 출력을 생성유도 논리적 역설, 거짓 전제, 통계적 오류 삽입

 

- 대부분은 Prompt Injection은 Jailbreaking 기법을 사용

> AI의 제한(가드레일)이나 안전 필터를 우회 하거나 완화하기 위한 방법

> Context Ignoring, 참조 usal Suppression, Style Injection, Virtualization, Obfuscation 등의 패턴

9. 제로트러스트 가이드라인 2.0 주요 내용 및 향후 방향

- 제로트러스트 도입 과정을 보다 구체화하고 도입 수준을 분석할 수 있는 방안 제시

> 미국 CISA, NSA 등 문서 발간에 맞추어 성숙도 모델을 4단계 수준으로 정의 및 성숙도를 토대로 체크리스트 구현

> 도입 절차에 대한 방향성 구체화 및 조직 내 역할 및 목표 설정 방안 제시

> 보안 수준 평가 방법 제공

 

- 향후방향

> 각 산업 분야 및 기업 도메인 특성을 반영한 맞춤형 도입 전략 및 로드맵 제시 필요

> 우리나라에서도 글로벌 제로트러스트 도입 흐름을 적극 반영하여, ZT 아키텍처 도입 정책을 수립하고 관련 기술 개발 가속화 필요

> 제로트러스트 도입 후 발생하는 문제를 해결하기 위한 방안 마련과 지속적인 연구가 필요

> NIST 1800-35, 800-53, ISMS-P, 금융보안원 취약점 점검 리스트를 토대로 새로운 형태의 체크리스트 구현 중

'대외활동' 카테고리의 다른 글

PASCON 2024  (1) 2024.09.11
코리아 핀테크 위크 2024  (5) 2024.09.01
제13회 정보보호의 날 기념식  (0) 2024.07.11
RSAC2024 글로벌보안트렌드  (0) 2024.06.13
2024 상반기 침해사고 정보공유 세미나  (0) 2024.06.11

+ Recent posts